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1 Content 

 

This document presents an extension of the CONTREX UML/MARTE network 

modelling methodology. This document is complementary to the documentation 

generated so far in CONTREX regarding the definition of a modelling methodology for 

embedded systems and embedded distributed systems [1] and to the related publications 

[6]-[12]. The modelling methodology in turn relies on the CONTREX metamodel [2]. 

As was noticed in D2.2.1 [1], the CONTREX UML/MARTE methodology is built-up 

on top of previous UML/MARTE modelling methodologies (COMPLEX [3] and 

PHARAON [4]). These methodologies supported embedded system modelling for 

design space exploration and for software synthesis. 

In CONTREX, the modelling methodology is enhanced to support key aspects in the 

modelling and design of mixed-criticality systems (MCS) and systems-of-systems 

(MCSoS) [5]. For it, D2.1.1 introduced criticality in the metamodel. D2.2.1 introduced 

the mechanisms to describe criticality within the model. In CONTREX, criticality has a 

wide meaning, in the sense that criticality can be applied to different modelling 

elements (e.g. application components, platform resources and extra-functional 

properties) and be interpreted according to the context. D2.2.1 also introduced 

improvements, such as contract modelling and polishing of the description of the design 

space to better exploit MARTE.  

D2.2.1 also slightly introduced network modelling. Network modelling is a need to 

enable the methodology to tackle the modelling of embedded distributed systems. As 

will be shown, the CONTREX network modelling methodologies turns around the 

network ñnodeò, as a fundamental component of the system-of-systems. The 

CONTREX network modelling methodology enables a rich variety of modelling 

possibilities of the node. It is required for a compact and coherent modelling of the 

ñcomputing continuumò present in real networks, which can range from small sensors 

or actuators to big data centres. 

This documents extends the work in [1] and in [6]-[12] in order to support a ñmulti-

level modelling approachò and a more flexible and automated DSE of distributed 

embedded systems. The presented extension also enables a more homogeneous 

integration with previous advances of the Embedded Systems Group of the University 

of Cantabria on the UML/MARTE-based modelling and design of embedded systems 

[3][4]. Section 2 provides an introductory background for a deeper understanding of the 

contribution of the extension proposed. Section 3 literally inserts some of the previous 

work and results for reader convenience. Section 4 introduces the overall network 

methodology under the extended perspective. Remaining sections are devoted to 

introduce the specific features (with emphasis on the extensions).   
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2 Background  

 

The CONTREX modelling methodology has considered a bunch of relevant work 

which has already addressed network modelling from UML, and MARTE. 

Edalab and U.Verona have developed a methodology for UML/MARTE modelling and 

estimation of packet-based networks, mostly focusing on wireless networks [6][7][8]. 

The approach supports the automated generation from UML/MARTE of a SystemC-

based model (relying on the SCNSL library). The simulation of this model enables the 

QoS analysis of the network performance, i.e. how the network performs under the load 

conditions imposed by the application tasks and the network architecture. 

Focusing only on modelling, the methodology supports the description of the network 

architecture, by relying on nodes and abstract channels. Nodes and abstract channels 

enable high-level modelling of network resources. Their attributes reflect computation 

and communication capabilities respectively. In addition, the methodology supports the 

modelling of the distributed application by relying on tasks and dataflows. Tasks are 

mapped on nodes. Dataflows reflect task-to-task communication without a necessary 

match to a fixed abstract channel or path. 

The methodology also introduces the concept of zones and contiguity. These concepts 

enable to group the nodes under zones with the same propagation conditions. The 

concept of contiguity enables the modelling of the Resistance between zones. In this 

methodology, the Resistance enables a high-level modelling of the spoil of the 

transmission attributes for those abstract channels crossing zones. 

In [8], the [6][7] modelling methodology was extended to support the design space 

exploration of both HW/SW architectures and network architectures, and to obtain out 

of it a simulation model, relying on SCoPE+ (for node simulation) and SCNSL (for 

SystemC-based simulation of the network. In [8], the application tasks are described 

through UML activity diagrams (to enable the modelling of the applications mapped to 

the node). 

In [9] the modelling approach basing the work published in [8] is detailed. An important 

difference with regard works in [6][7] is the capability to describe the internal HW 

architecture of the node. In fact, the node is understood as a HW computation resource 

with networking capabilities, i.e. with a network interface. For such a description of the 

node, the component-based approach from [3][4] is adopted. The internal architecture of 

the node has to contain an instance of a network interface component. This view of the 

node enables the modelling of distributed OS and their mapping to one or more nodes. 
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In [10] for the modelling in UML/MARTE of wireless sensor networks (WSN) was 

present. The primary goals such a methodology are to enable accurate estimations based 

on the detailed modelling of node architectures, and of their deployed SW. Such 

accuracy shall enable analysis of the WSN for better optimization, especially for power 

consumption, a main limiting factor in WSN design; and for realistic analysis of WSN 

behavior under attack conditions, which typically leads node SW to corner cases. 

Complementary to these objectives, the methodology also makes a proposal for the 

modelling of the environment agents which that attack the network introducing noise 

and traffic. 

The modelling methodology (being detailed in [11]) supports separation of concerns by 

means of views. 

Some views support the detailed description of the node internals application, SW 

architecture, HW architecture, etc. In contrast to the approach in [8], where the node 

comprises a set of HW resources, including at least a CPU and a network interface, in 

[10][11], the node is modelled as a complete embedded system, which thus comprises, 

as well as the HW resources, also the platform SW (typically, the RTOS) and 

application software. This enables the description of the embedded distributed system as 

a system-of-systems. 

Other views are devoted to the description of the network. Specifically, one view covers 

the declaration of the different types of nodes, while other view enables their 

instantiation and interconnection to describe the network architecture.  

As the methodology in [8][9] , the [10][11] methodology, uses network interfaces. It 

also uses battery elements (to model energy capacity of the node) and sensor devices. 

The aforementioned work has meant an evident advance on network modelling in 

MARTE. However, further features are still required to cover the CONTREX 

modellings needs, driven by the modelling of complex real network in the context of 

MCS design. 

First, there is a lack of a ñmulti-level approachò. Each of the aforementioned 

methodologies cover a specific perspective of the node. That is, [6][7] provide and 

abstract view, [8][9] a view of a node as a HW resource, and [10][11] as a complete 

system. However, a real network will in general reflect a ñcomputing spectrumò. Nodeś 

computation capabilities can range from a simple amount of logic, to large servers. 

Similarly their respective functionalities range much in size and complexity. Some 

nodes will be ñclosedò systems, in the sense that they do not admit further application 

SW mapping, while others can admit the migration of further functionality.  Moreover, 

thinking in terms of modelling needs, the designer might want to model in detail some 

nodes, while not others. There are several reasons for it, e.g. because there is no detailed 

information about the internal architecture of the node, because such a detail is not 

required for yielding the accuracy, while the modelling and/or the associated simulation 

effort to estimate the performance of a networked system were every node is modelled 

in whole details is not expendable. Therefore, in general, each node requires its own 

way of modelling, suitable to the modeller and designer needs.   
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The aforementioned methodologies are not sufficiently flexible to specify a design 

space. Specifically, regarding the way mappings are expressed in the network 

modelling. In the aforementioned methodologies tasks-to-node mappings are fixed, 

either through the task-node association in the deployment diagram [8], either through 

fixed allocations through associations in a composite diagram. This mechanism is quite 

inefficient in exploration, since it involves model edition (and thus the regeneration of 

the simulation model), which is a time-costly process, for the exploration of 

alternatives. The same can be said for the modelling of the mapping of nodes to zones. 

Additionally, specific support stating how to link to the modelling of the physical 

environment is required. The design of a control embedded systems (CES) and control 

embedded distributed systems (CEDS) requires the modelling of the closed-loops 

between the CES/CDES and the environment. In other words, it requires to support the 

modelling of a cyber-physical system and of a cyber-physical system-of systems. In the 

context of the network modelling methodology, it has implications on the node 

description.  

The concepts of zones and contiguity introduced in [6][7] focuses on the modelling of 

geographical area in terms of effects on the attributes on the communication resources. 

However, a more generic and flexible approach is possible, where other types of zones 

are supported, to reflect geographical areas where certain physical parameter is constant 

(or in certain bounds), and/or which enables a specific type of analysis. In such a 

context, different zone types can be present in the model, and a node can belong to one 

zone of each type. 
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3 Previous Results in CONTREX 

As was mentioned, [9] is a work-in progress in the context of CONTREX. This work in 

turn already relies on other previous results which are reminded in the following sub-

sections. 

3.1 CONTREX Network Metamodel (CONTREX D2.1.1) 

 

In the following paragraphs, the content of section 5 of D2.1.1 referring to the meta 

model for network modelling is literally reproduced for convenience, since it is the 

fundament for the network modelling methodology. This description has to be 

understood as a ñnetwork domain viewò
1
. 

The network domain view provides a generic ontology for the modelling of networks, 

valid for different languages (at least for those present in CONTREX). Furthermore, it 

has been done relying on MARTE existing domain concepts, such the extension of new 

concepts is minimized. 

Here (in section 5 of CONTREX D2.1.1) we include modeling elements that are useful 

to realize the validation of distributed applications deployed on communication 

resources subject to certain error rate. This allows for the modeling of embedded 

systems connected through partially reliable networks and a high level characterization 

of the network.  

MARTE is suitable for the low level accounting of resource usage in time, and this is 

also applicable to the networks when they are schedule with concrete arbitration 

strategies; but when general purpose networks are used or when not detailed 

accounting of networking needs is available, a high level characterization of 

communication needs and available capacities can be used. This scales up well not only 

to general purposes traditional internet protocols but also to wireless and mobile 

communication. 

This chapter is organized in three sections. The first consider extensions to MARTE that 

help to model the network topology, and the overheads on processors due to the 

handling of packets to be sent and received. The second proposes extensions to the 

modeling of the necessary workloads, both, in communication and computing oriented. 

The last proposes a complete set of modeling elements to capture specific analysis 

contexts for the validation of required communication needs deployed on the available 

platforms. 

  

                                                 

1
 The MARTE standard systematically introduces a ñdomain viewò for presenting the fundamental 

modelling concepts, before introducing the actual elements which compose a MARTE sub-profile. 
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3.1.1 Topology and platform overheads due to communication 

Since MARTE profile is devoted to model real time embedded systems, it lacks precise 

semantics related to networked embedded systems which are mainly for the 

communication aspects between embedded elements. 

Fortunately, and contrary to an often expressed opinion, MARTE had addressed the 

main elements of such systems and it is not necessary to add new fundamental modeling 

concepts to MARTE profile. Instead, the work being done in the specification consisted 

of defining new stereotypes for the communication aspects of embedded systems such as 

network interfaces.  

Therefore, we have introduced new stereotypes to extend the semantics of MARTE 

profile, stereotypes are:  

1. AbstractChannel, 

2. NetworkInterface  

CommunicationResource

elementSize : Integer

CommunicationMedia

packetSize : Integer

CommunicationEndPoint

0..* 1..*mediaendPoint

overhead : WorkloadBehabior

NetworkInterface

ComputingResource

speedFactor: NFP_Real 

ProcessingResource

0..*

1..*host

nwInterface

resMult: Integer

isProtected : Boolean

isActive : Boolean

Resource

errorRate : NFP_Percentage

wireless: Boolean

AbstractChannel

1..* nwInterface

 

¶ A ProcessingResource generalizes the concepts of CommunicationMedia, 

ComputingResource, and active DeviceResource. It introduces an element that 

abstracts the fundamental capability of performing any behavior assigned to the 
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active classifiers of the modeled system. Fractions of this capacity are brought 

to the SchedulableResources that require it. 

¶ A CommunicationResource represents any resource used for communication 

and may be considered as a collector of communication services. It generalizes 

the two kinds of communication resources defined, communicationEndpoint and 

communicationMedia. 

¶ A ComputingResource represents either virtual or physical processing devices 

capable of storing and executing program code. Hence, its fundamental service 

is to compute, what in fact is to change the values of data without changing their 

location. It is active and protected. 

¶ A CommunicationEndPoint acts as a terminal for connecting to a 

communication media, and it is characterized by the size of the packet handled 

by the endpoint. This size may or may not correspond to the media element size. 

Concrete services provided by a CommunicationEndPoint include the sending 

and receiving of data, as well as a notification service able to trigger an activity 

in the application. 

¶ A CommunicationMedia represents the means to transport information from 

one location to another (e.g., message of data). It has as an attribute the size of 

the elements transmitted; as expected, this definition is related to the resource 

base clock. For example, if the communication media represents a bus, and the 

clock is the bus speed, ñelement sizeò would be the width of the bus, in bits. If 

the communication media represents a layering of protocols, ñelement sizeò 

would be the frame size of the uppermost protocol. 

¶ A NetworkInterface acts as an interface to connect a physical device with a 

communication media. It has an attribuite WorkloadBehavior which represents 

a given load of processing flows triggered by external (e.g., environmental 

events) or internal (e.g., a timer of the communication protocol) stimuli. The 

processing flows are modeled as a set of related steps that contend for use of 

processing resources and other shared resources.  It may contain the 

communication protocol agent. 

¶ A Node represents physical processing devices capable of storing and executing 

program code. It can be seen as a container of tasks. At the end of the 

application design flow, nodes will become HW entities with CPU and network 

interface and tasks will be implemented either as HW components or as SW 

processes. It can be fixed or mobile node. 

¶ An AbstractChannel is a generalization of network channels since it contains 

the physical channel, and all the protocol entities up to level N-1. It has an 

attribute errorRate which defines the bit error rate of it. It has an attribute 

wireless to define if it is wire or wireless channel. 

  

 



 

 

13 

 

3.1.2 Extensions for modeling general purpose networking workloads 

 

As it was mentioned in section 5.1 that MARTE has provided the main elements for 

modeling embedded systems but it lacks some semantics related to networked embedded 

systems.  

Therefore, MARTE elements may be extended to compensate such lack. For example, 

Quality of Service of the communication media between embedded device in terms of, 

delay, throughput, error rate, is considered as an important feature to measure the 

performance of such applications.   

Therefore, we have introduced new stereotypes to extend the semantics of MARTE 

profile, stereotypes are:  

1- CommunicationRequirements 

2- CommunicatingTask 

msgSize: NFP_DataSize

CommunicationStep

maxErrorRate: NFP_Percentage

maxThroughput: NFP_Frequency

maxDelay: NFP_Duration

CommunicationRequirements

RtUint

CommunicatingTask

isDynamic : Boolean

isMain : Boolean

memorySize : NFP_DataSize

srPoolPolicy : PoolMgtPolicy

srPoolWaitingTime : NFP_Duration 

requiresMobility: Boolean

isPeriodic: Boolean
 

 

¶ A CommunicationStep is an operation of sending a message over a 

CommunicationResource that connects the host of its predecessor Step, to the 

host of its successor Step. 

¶ A CommunicationRequirements are the requirements of a data flow to be 

assigned to an abstract channel and that to establish the communication 

between two tasks. It has three attribuites, maxErrorRate is the maximum 

number of errors tolerated by the destination; maxThroughput is the maximum 

amount of transmitted information in the time unit; maxDelay is the maximum 

permitted time to deliver data to destination. 
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¶ A RtUnit is real-time unit and it owns at least one schedulable resource but can 

also have several ones. If its dynamic attribute is set to true, the resources are 

created dynamically when required. In the other case, the real-time unit has a 

pool of scheduling resources. When no schedulable resources are available in 

the possible, the real-time unit may either wait indefinitely for a resource to be 

released, or wait only a given amount of time (specified by its poolWaitingTime 

attribute), or dynamically increase its pool of thread to adapt to the demand, or 

generate an exception. A real-time unit may own behaviors. It also owns a 

message queue used to store incoming messages. The size of this message queue 

may be infinite or limited. In the latter case, the queue size is specified by its 

maxSize attribute. In addition, a real-time unit owns a specific behavior, called 

operational mode. This behavior takes usually the form of a state-based 

behavior where states represent a configuration of the real-time unit and 

transition denotes reconfigurations of the unit. 

¶ A CommunicatingTask represents a basic functionality of the whole 

application; it takes some data as input and provides some output. It should be 

allocated in a Node to perform its operation. It has an attribute named 

requiresMobility to define its requirement to be allocated in a mobile or fixed 

node. It can be periodic or aperiodic task and it is specified from isPeriodic 

attribute. 

 

3.1.3 Allocation and models for network analysis 

 In this section we extend MARTE communciationChannel element by a new stereotype 

for DataFlow to express the communication requirements of the data flow from the 

communication channel.  

msgSize: NFP_DataSize

utilization: NFP_Real 

CommunicationChannel

communciationRequirements: 

CommunicationRequirements  [*]
taskSource: Task [*]

taskDestination: Task [*]

DataFlow

 

 

¶ A CommunicationChannel is logical communications layer connecting 

SchedulableResources. 
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¶ A DataFlow represents the communication requirements between two tasks; 

output from a source task (taskSource) is delivered as input to a destination task 

(taskDestination). It has an attribuite communciationRequirements which 

describes the communication requires to perform the communcaition between 

two tasks. It should be allocated in an abstractChannel to perform its 

operations. 

 

3.2 CONTREX Network Profile 

As a result of the metamodeling effort a first profile version has been generated and 

reported in [12] and in the D2.2.1 CONTREX deliverable. Figure 1 reproduced it here 

for convenience. 
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Figure 1 The CONTREX network profile provides additional BasicNFP types and two subprofiles 

for describing workloads and network resources. 

 

3.3 CONTREX Modelling Methodology (CONTREX D2.2.1) 

The D2.2.1 deliverable presented the preliminary version of the modelling 

methodology. As was mentioned, this document is mostly focused on the modelling of 

an embedded system and slightly introduced network modelling. 
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4 Network UML/MARTE modelling 
methodology 

4.1 Purpose and contributions 

The CONTREX network modelling methodology fills the gap in the currently available 

UML/MARTE modelling methodologies, suitable for embedded systems modelling, but 

yet inefficient for network modelling. 

The CONTREX network modelling methodology supports a wide concept of node, a 

fundamental element in network modelling, to enable the modelling of the ñcomputing 

spectrumò present in the networks of the IoT era. Being oriented to embedded 

distributed systems, the methodology covers models where the node is understood as a 

computational element with network interface capability. Moreover, the methodology 

supports the modelling of nodes of any type (switches, routers, data center, super-

computers) which range different computational and functional capabilities, at different 

abstraction levels. 

Following, a list of contributions of the CONTREX network modelling methodology to 

the SoA is given, accounting for the aforementioned capability is given: 

¶ It enables a multi-level modelling approach. The approach is multi-level in the 

sense stated in [5], that is, that the methodology enables modelling network 

nodes of different types and at different levels of abstraction. 

¶ It enables the flexible mapping and exploration of a distributed applications into 

a network; 

¶ It establishes the link to model CPS and CPSoS; 

¶ It extends the concept of zones, by supporting several types of them in the same 

model, and makes the mapping to zones more flexible for exploration. 

The CONTREX network modelling methodology is smoothly integrated with the 

embedded system modelling. A component-based modelling approach and a reduced 

but efficient set of modelling techniques is homogeneously applied at every modelling 

level: application, SW platform, HW platform, and network.  

By relying on the CONTREX metamodel, the concepts presented in the background 

methodologies shown in section 2 are covered. 

4.2 Modelling elements 

The modelling elements to be employed in the network modelling methodology are the 

ones defined in the CONTREX metamodel. 
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As a reference, the profile shown in section 3.2 is used. Required extensions of that 

profile will be reported in place. Most of them are simply profile extensions which do 

not require an actual extension of the metamodel, keep back compatibility with the 

modelling approaches proposed in [6][7][8], and which enable a more convenient and 

flexible UML modelling style.  

4.3 Network modelling views 

The CONTREX modelling methodology supports two specific views for network 

modelling: the node view and the network view. The views are specified as UML 

packages with the <<NodeView>> and <<NetworkView>> stereotypes. 

The node view serves to declare the different types of network nodes present in the 

network mode. The network view is used to capture the network architecture. 

 

Figure 2 Network and node views. 

Node and network views hang from the root of the model, in the same level as other 

views devoted to the description of an embedded system, such as the application view, 

the SW Platform view, and the HW resources view.  

As reflected in Figure 3, the network model depends on the information captured in the 

application, SW platform, and HW resources views. It means that, for the completion of 

the capture of the node view and of the network view, the capture of the application, 

SW platform, and HW resources views has to be completed first. 

 

Figure 3 Network and node views depend on the application, SW platform and HW resources view. 
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However, to the effects of modelling workflow, the concurrent capture of some 

elements in the different views is possible. For instance, the architecture of the network 

can be captured upon nodes incompletely captured, i.e. where not all of their attribute 

values have been fixed. 

4.4 Network Architecture 

The network architecture is a primary information with relevant impact on the overall 

performance of either a System-of-Systems or a distributed application. The network 

architecture consist of the set of node instances present in the network and how they are 

interconnected. In other words, the network architecture captures the network topology. 

 

Figure 4 .Example of network architecture. Five network nodes of three node types are instanced in 

a ñnetwork_exò component located in the network view. 

The network architecture is described in the network view, i.e. <<NetworkView>> 

package. 

Within the <<NetworkView>> package, a network component has to be declared. A 

composite diagram associated to the network component is used to capture the network 

architecture. 

UML properties are used to capture node instances, e.g. ñTsens1ò or ñnet_node1ò in 

Figure 4. The type of node instance is captured by typing the UML property with one of 

the node components declared in the node view. For instance, ñTsens1ò node of type 

ñT_sens_strò, and ñnet_node1ò is a node of type ñnet_nodeò, e. g. to model a sensor and 

a router node. 

Port-to-Port connectors enable to link nodes and model ideal point-to-point connection 

among network nodes. 

Moreover, modelling of ñnon-idealò point-to-point communication links is supported by 

stereotyping the port-to-port connectors as <<AbstractChannel>>, as shown in Figure 4. 

The <<AbstractChannel>> supports abstract modeling of non-ideal point-to-point 

transmission characteristics. Specifically, it supports the modeling of: 

¶ Error rate (provided by <<AbstractChannel>>) 

¶ Throughput (Hz) (inherited) 
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¶ Capacity (Tx Rate) (inherited) 

These characteristics are due to the consideration of low-level factors, e.g. type of 

transmission physical media, material of the wire, distance between access points, etc.  

The aforementioned attributes of <<AbstractChannel>> provide a convenient 

abstraction for data-packet network modelling as long traffic conditions and low-level 

factors, like distance among nodes, can be considered stable (fixed) along time. 

If this is not the case, annotated values can be considered for the initial state of the QoS 

of the communication links. 

A main scenario where data links transmission conditions happens where there are 

wireless network involved. To tackle an abstract modelling of it, the methodology 

support stating if the point-to-point link is wireless or not. As was shown in section 3.2, 

the <<AbstractChannel>> stereotype supports the modelling of an important intrinsic 

factor, if the channel is wire or wireless. Zones and contiguity enable taking into 

account mobility while keeping the abstract modelling of node communication 

characteristics. This is discussed in detail in section 4.8. 

Notice also that a network modelling methodology can consider several lower levels of 

detail in the modelling of communication resources, e.g. to account for the impact of 

communication protocols, node distances, geometry, etc. However, such a low-level 

modelling of the underlying communication infrastructure is possible, but it also has an 

additional, non-negligible modelling and simulation cost. 

 

4.5 Node Modelling 

The proposed network modelling methodology provides a rich variety of modelling 

approaches for network nodes. Specifically, the methodology supports the modelling of 

different types of nodes at different abstraction levels. 

The methodology enables the following abstraction levels in the modelling of a node: 

¶ description of its internal architecture  

¶ description of a behavioural model 

¶ as a deterministic or statistic traffic pattern generation/consumption 

Moreover, in the former case, the methodology supports the modelling of a node: as: 

¶ a HW computation resource 

¶ a SW/HW platform, i.e. a HW resource with a SW layer which enables call 

computation and communication services, 
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¶ a complete system, in the sense that the node includes autonomous applications 

which can cooperate with other nodes thanks to the networking capabilities of 

the node. 

Subsection 4.5.1 presents where and how network nodes are declared. The following 

subsections show the mechanisms available to describe a node. 

Subsections 4.5.2, 4.5.3, 4.5.4, refer to detailed node description mechanisms where its 

internal architecture is captured. Subsection 4.5.5 points out where the components used 

to describe the node internal architecture are taken from. 

Subsections 4.5.6 and 4.5.7 refer to more abstract ways to model the nodes. 

4.5.1 Node declaration 

Nodes are declared in the node view, i.e. the <<NodeView>> package. Nodes are 

declared as components with the <<Node>> stereotype applied. 

Figure 5 and Figure 6 show two examples of node declarations.  

 

Figure 5 Example of declaration of nodes whose internal structure is described. 

Figure 5 shows an example where three types of network nodes (a temperature sensor 

node, a network node, and a server node) are declared. 

Figure 6 shows an example whith more types of nodes are declared. For instance, to 

declare temperature and light sensor, and heater and cooler actuator nodes, a network 

(router) node, and a server node. 

 

Figure 6. Example of node declarations for the description of a distributed control of temperature 

and light in a building. 
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In the Figure 6 node view, some colouring has been used to distinguish node types. It 

can be useful, e.g. to help the user to identify node types, according to the own user 

criteria. However, colouring is an UML editor dependent feature, and it is not part of the 

semantic model. 

4.5.2 Description of the node as a HW resource 

The methodology supports the modelling of the node as a cluster of HW resources with 

access to, and that can be accessed from, the network. The node will include at least 

computational HW resources, and HW resources for accessing the network (network 

interface). Eventually, it can also contain other type of hardware resources (memories, 

sensors, actuators, battery, etc). 

The description of the node as a HW resource is similar to the description of the HW 

architecture when a single-system model is developed. That is, a composite diagram is 

associated to the node and instances of the components declared in the HW resources 

view are done and interconnected through port-to-port connectors. 

However, there are specific considerations in the description of nodes as a HW 

resource: 

¶ Since the node view contains several nodes in general, and the internal 

architecture of the node can be described, a model can contain several HW 

architectures (which is not the case of the single-system scenario in the 

modelling methodology
2
).  

¶ The HW architecture of the node has to include an instance of a network 

interface component instance. 

¶ The previous rule requires, in turn, the declaration of at least one network 

interface component within the hardware resources view. 

¶ The node component has to have at least one flow port, captured as a 

<<PortFlow>> port, which reflects a logical packet traffic interface between the 

node and the rest of the network
3
.  

¶ The aforementioned flow port has to be associated to a network interface. 

                                                 

2
 Here it is convenient to remind that in the development of a single-system model, e.g. a MPSoC model, 

only one <<System>> component within the architectural view is employed and allowed to capture 

system internal architecture. In contrast, when a network model is developed, the user in general will 

want to be capable to model several sub-systems interconnected among them.  The methodology supports 

it through the capability of declaring several nodes in the node view. Each of those nodes support the 

description of its internal architecture, as it was done for the system component in the single-system 

modelling approach. The result is that the user can develop a System-of-Systems (SoS) model with a 

precise description of each node involved 

3
 Notice that this flow port reflects neither a high-level functional interface, nor a low-level interface, i.e. 

a bit-level or physical description of the network traffic 
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Figure 7. Example of the description of a node as a cluster of HW computational and network 

resources. 

Figure 7 shows an example of the description of the internal architecture of a node as a  

HW resource. 

 

Figure 8. A network interface component declared in the node view. 

The network interface component instance (ñnetif1ò) is captured as a UML component 

with the <<NetworkInterface>> stereotype applied.  

The stereotype provides key attributes in the description of the transmission and 

reception capabilities in the connection of the node to the network. Some of these 

attributes (thresholdPower, txPower, packetsize) are supported by metamodel shown in 
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section. Other attributes (tx_capacity, rx_capacity, transMode) are supported after the 

extension illustrated in Figure 9
4
.  

 

Figure 9. The <<NetworkInterface>> also has a capacity attribute. 

The model can leave these attributes unset. In such a case, if the attributes of the 

abstract channel are settled, only they are considered, which enables a very synthetic 

network modelling. 

Moreover, in the more general case, the user can state the attributes of the abstract 

channel and of the network interfaces of the transmitter and receiver nodes, which 

enables a more accurate modelling.  

Specifically, if the capacity attributes are stated also in the network interfaces, then the 

more restrictive capacity attribute either at the network interface side, or at the abstract 

channel side applies. Following, some modeling cases illustrate the semantics: 

¶ The node-to-node connection is ideal (no <<AbstractChannel>> stereotype 

applied), and the network interfaces at the transmitter and receiver nodes have 

no settled attributes. This means an ideal point-to-point link between the nodes. 

¶ The node-to-node connection is ideal (no <<AbstractChannel>> stereotype 

applied), and the network interface of the transmitter node has a settled attribute, 

e.g. capacity=1000Mbps, while the network interface at the receiver side has no 

capacity attribute settled. Then, the capacity of the transmitter network interface 

                                                 

4
 Other extension possibilities have been assessed and finally discarded, which is documented in section 

6.2 of this report. 
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defines the maximum speed of the point-to-point node connection, i.e. 

1000Mbps. 

¶ The node-to-node connection has the <<AbstractChannel>> stereotype applied, 

with settled attributes, e.g. capacity=1Mbps, and the transmitter network 

interface has a settled attribute too, e.g. capacity=1000Mbps, while the receiver 

network interface has not capacity attribute settled. Then, the most restrictive 

capacity defines the maximum speed of the point-to-point node connection, 

1Mbps in this case. If, to the contrary, the transmitter network interface had 

capacity=256K, then 256Kbps would be the resulting point-to-point capacity. 

4.5.3 Description of the node as a SW/HW platform 

The methodology supports the modelling of the node as a SW/HW platform with access 

to, and that can be accessed from, the network. That is, as well as a set of HW resources 

(at least computational and network resources), the node also contains a set of SW 

platform resources, i.e. an RTOS and eventually the required drivers. 

The capture of the internal architecture of a node as a SW/HW platform follows the 

same rules as for the capture of a node as a HW platform, plus the inclusion of at least 

the following elements: 

¶ An operative system instance 

¶ The allocations of every operative system instance to at least one processing 

element of the HW architecture of the node 

Figure 10 provides an example of the internal architecture description of a structured 

node, specifically of the ñserver_nodeò instanced in the network architecture example 

show in Figure 4. 

 

Figure 10. Example of the description of the internal architecture of a resource node. 
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In the example, the ñrtosò UML property is an instance of the ñubuntu14.04ò 

component type. In turn, the ñubuntu14.04ò component is declared in the software 

platform view, as shown in Figure 11. 

 

Figure 11. Declaration of an OS component in the SW platform view. 

4.5.4 Description of the node as a complete system 

A node can be a specific system with specific applications running on it and performing 

a specific functionality. Moreover, in the specific case of a distributed control system, it 

can perform sensing and/or actuations.  

Figure 12 shows an example of node described as a complete system. The methodology 

supports the description of any scale of system nodes, from big servers to small 

embedded systems. Thus, for instance, a complete system node can consist in growing 

the Figure 10 SW/HW platform by including component application instances and 

mapping them to the RTOS instance. Figure 12 shows the case of a small embedded 

system, specifically, the internal architecture of the temperature sensor ñT_sens_strò 

node, employed to model the temperature sensor nodes instanced in the Figure 4 

network architecture. Figure 12 shows a node architecture where the ñTsens.exeò 

application (captured as an instance of a memory space in the modelling methodology) 

is mapped to the ñrtosò instance, in turn mapped to an ARM7 based platform
5
. 

                                                 

5
 In the methodology there is not currently bare-metal application mapping. It is assumed that every 

application component will be mapped to an RTOS. Eventually, the model can be simplified to map a 

memory space instance (ñan executableò) directly to a processor, but the methodology implicitly assumes 

that there is an RTOS instance (of a default type) in between.. 
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Figure 12. Internal structure of the ñT_sens_strò node, example of embedded system as a node. 

Remind that, in terms of SW synthesis, the memory space ñTsense.exeò corresponds to 

a single executable. The mapping of the application component instance to the memory 

space is be done in the memory space view, as reflected in Figure 13. 

 

Figure 13. Allocation of a component application instance to a single memory space. 

Notice that, in contrast to the single-system modelling scenario, when modelling a 

network node (Figure 12) ñTsense.exeò is not a reference to an existing application 

component instance, but it is a new application component instance. It means that each 

instance of the ñT_sens_strò node will involve an (internal) new instance of the 

application and of its related memory space.  

Equivalently, it is possible to capture the whole node architecture at once, at it is shown 

in Figure 14. 
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Figure 14. Allocation of a component application instance to a single memory space. 

Notice again that the description of the internal structure of the node contains no 

references to either application instances or memory space instances from the 

application and memory space views respectively, but its own application component 

and memory space instances instead.  

4.5.5 Hw Resources, SW Platform, Memory Space and Application views as 
Unified repositories for the Nodes´ Description 

The HW resources, SW platform, Memory Space and application component views 

declare all the components required for every node requiring the description of their 

internal architecture (sections 4.5.2, 4.5.3, 4.5.4). Letôs take for instance the declaration 

of HW resources. If two or more nodes declared in the node view are describing their 

internal architecture, the HW resource view has to declare all the HW resource 

component types employed in the description of each of those nodes. The same applies 

for the SW platform. 
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Figure 15. Example of the HW resources view. The set of declared HW components is the union of 

HW components instanced for each of the internal architectures captured for the three nodes 

declared in the node view shown in Figure 5. 

4.5.6 Description of a node through a Behavioural model 

A node can be described by associating a behavioural model which reflects the packet 

traffic generation/consumption pattern of the node. This enables an abstract modelling 

of complex traffic generation/consumption patterns, while it does not require to capture 

the details of the internal architecture of the node. 

The methodology comprises to mechanisms to model the node behaviour: 

¶ By associating a file 

¶ By associating an activity diagram 

The modelling procedure is the following. In a first step, a communicating task is 

declared as an application component in the application view. Such a component is 

stereotyped as <<Task>>, to refer that its functionality does not necessarily reflect an 

actual application functionality, but eventually a model of how a node will generate 

and/or consume packets. Then, either a file with the functionality or an activity diagram 

is associated to such a component. 
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Figure 16. Behavioural model of the traffic node generation declared as <<Task>> component in 

the application view. 

In order to associate the file, a <<file>> artifact is associated to the component. The 

ñmainò attribute of the artifact refers to the function which contains the code modelling 

the traffic generation/consumption. 

In order to associate an activity diagram, a conventional UML modelling procedure is 

followed, i.e. the <<Task>> component owns an UML activity (classified Behavior) 

with its corresponding activity diagram. Figure 17 shows an activity diagram capturing 

a possible model of the packet generation performed by the temperature sensor. This 

way, the temperature sensor can be modelled in a more abstract way than the way it was 

shown in section 4.5.4. Notice in Figure 16 task component declaration a symbol 

denoting the association of the activity diagram
6
. 

 

Figure 17. Example of activity diagram which captures the packet generation performed by the 

monolithic model of the temperature sensor node. 

After the <<Task>> component has been declared and a behavioral model, either via a 

file or via an activity diagram, has been associated, a second modelling step has to be 

performed. A ñvoid nodeò component has to be declared in the node view, as illustrated 

in Figure 18, where the ñT_sens_voidò void node is declared. No internal architecture 

description is associated to such node component
7
.  

                                                 

6
In the application view, this symbol also appears for the <<system>> component, which has a composite 

diagram associated where the application architecture is described. 

7
 Notice that there is no symbol denoting that there is no association of any internal structure to the node. 
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Figure 18. Declaration of ñvoid nodeò in the node view. 

Finally, as third modelling step has to be performed in the network view, consisting in 

the mapping via an <<allocate>> relationship of the task component instance to a 

ñvoidò node instance. 

 

Figure 19. Mapping of a functional model of traffic generation to a ñvoidò node. 

The afore described three step mechanism is quite flexible in the sense that it allows a 

single-source model for the exploration of different traffic source and sink models (see 

section 4.9.1.2).  

However, if such type of exploration is not required and the modeler is associating only 

a single type of behavioral model for traffic generation/consumption, then the modelling 

task can be greatly simplified into a more synthetic modelling mechanism. Such 

mechanism consists in directly associating the behavioral model to the node component 

(which is no longer a ñvoidò one). 

In this synthetic modelling procedure, no declaration of a <<Task>> component is 

required in the application view. The modeler only needs to declare the node in the node 

view and associate to it either a UML operation or an activity diagram. 
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Figure 51 illustrates a case where a ñTsensor_nodeò node component is declared and the 

same activity diagram shown in Figure 17 is associated to it
8
. 

 

Figure 20. A component node in the node view which has been directly associated an activity 

diagram as behavioural model of traffic generation/consumption of the node. 

Figure 21 illustrates the case where the a ñTsensor_nodeò node component is declared 

and the functionality modelling. A <<File>> artifact is used to describe the source 

repository of the traffic model. 

 

Figure 21. Direct association of a function with the behavioural model of traffic 

generation/consumption of the node. 

Any tool navigating the model (for model transformation, code generation, etc) can 

recognize that the component node declared, in any of the two modelling styles, has 

associated a behaviour, which thus reflects a behavioural traffic packet 

generation/consumption model, and distinguish it from the cases where the internal 

architecture is described. 

 

4.5.7 Description of a node through attributes 

A node can be described through a set of attributes which define how the traffic is 

generated/consumed. This enables a more synthetic and abstract description than the 

                                                 

8
 Notice that now the node component is no longer ñvoidò, and the symbol that denotes and associated 

internal description (an activity diagram in this case) appears. When the internal architecture of the node 

is described as shown in sections 4.5.2, 4.5.3 and 4.5.4, the same symbol appears in node component 

declarations, but then it denoted the association of the composite diagrams employed. 
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one shown in section 4.5.6, for a predefined set of traffic generation/consumption 

patterns.  

The modelling procedure consists in stereotyping the node component with the 

<<Node>> and the <<CommunicationEndPoint>> stereotypes. 

 

Figure 22. Declaration of two nodes which model traffic generation/consumption through 

attributes. 

The combination of the ñpacketSizeò attribute (provided by 

<<CommunicationEndPoint>>) and the ñcommTxOvhò (provided by <<Node>>), 

enable the modeling of traffic source generators. The combination of the ñpacketSizeò 

and the ñcommRcvOvhò attributes (provided by <<Node>>) enable the modeling of 

traffic sink nodes.  

Finally, these node components are instanced in the network view. No allocation of 

application or memory space instances to them is required (see Figure 23 and Figure 30) 

as an example. 

 

4.6 Multi-level network modelling 

The methodology supports multi-level network modelling. Specifically, it means that 

the network architecture enables the instantiation of nodes at different abstraction levels 

(see section 4.5.1).  

Figure 23 shows an example of a temperature and light control system in a building, 

where node instances corresponding to the three abstraction levels are instanced.  

Specifically, the light sensors and controllers are node instances (coloured in yellow) 

typed as node components specified through attributes, in order to model then as source 

and sink generators (see Figure 22). 

The temperature sensors are node instances (coloured in pink) typed as node 

components with an associated behaviour (specifically using an activity diagram). 

For the remaining nodes, i.e. cooler nodes (in blue), heating nodes (in orange), the four 

gateways and the control server (in white), the internal architecture of them is described. 

Figure 23 also reflects a case where all these nodes are complete systems, i.e. whose 
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internal description also includes the application. It reflects then a System-of-Systems 

as a product of the interconnection of networkable systems.  

 

Figure 23 Example of network architecture with muli-level node modelling. 

Moreover, the network model can also merge the different types of nodes explained in 

sections 4.5.2, 4.5.3, and 4.5.4. Figure 30 illustrates this fact. In such a model, the 

cooler and heater nodes are embedded systems which already integrate a specific 

application on top of the HW/SW platform. However, the server node is modelled as a 

networkable SW/HW platform (with no applications inside).  

4.7 Mapping of distributed applications onto the Network 

The methodology enables the description of the mapping of the components of a 

distributed application onto the network nodes. 

Figure 30 advances that possibility showing that three component instances (in green) 

of a distributed application are statically mapped to the server node. Similarly, other 

instances (in green too) are also mapped to the gateway node. This also advances and 

illustrates the flexibility and power of this modelling approach. They gateway nodes are 

already embedded systems, with an ñinternalò application instance which runs a specific 
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routing algorithm. However, the nodes can also work as SW/HW platforms where 

further application components can be mapped. 

In Figure 30, it has been captured in a very synthetic way. To understand its precise 

semantics, it is better to start first explaining how the methodology covers the mapping 

of a distributed application onto the network and the more explicit modelling 

mechanisms. Specifically, this section will cover mechanisms available to specify a 

single mapping.  

 

4.7.1 Distributed Application: A PIM mapped to the network 

The first thing to take into account in this methodology is that an application is always a 

platform independent model (PIM). What makes can make it a distributed application is 

that two or more component instances are mapped to at least two or more nodes of the 

network. 

In the application view the following elements are found: 

¶ One or more application component declaration 

¶ one or more top application <<system>> components. Each of them has an 

internal architecture, with instances of the aforementioned application 

components. 

As a general rule, the application component instances that need to be mapped to the 

network are only are found on such application view, within the architecture description 

of the <<system>> components. Each of those components reflect an application to be 

assessed or implemented. And each of those <<system>> applications support a broken 

down mapping, i.e. each internal application instance can be potentially mapped to any   

node of the network. 

The previous rule does not mean that there are application component instances in the 

application view. As was explained in section 4.5.4, the description of the internal 

architecture of nodes can include application component instances. Therefore, this 

application component instances are already mapped its containing node. This static 

map cannot be changed from the network architecture view. It requires the edition of the 

internal architecture description of the nodes. 

The methodology provides more flexible alternatives which enables to specify and 

change in a simple way in the network view the static mapping of component 

application instances, memory space instances and RTOS instances to the network 

nodes. 

Such an alternative is illustrated in the following sections by means of an example. In 

such an example, of two applications called ñtop_Tctrl_appò and ñDisplayBuildDataò, 

declared in the application view, is going to be mapped onto the network ñnetwork_exò, 

shown in Figure 4. 
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The ñDisplayBuildDataò application is formed by a single component. The 

ñtop_Tctrl_appò has an internal architecture, and shown in Figure 24. It contains several 

instances of other application components, also declared in the application view. 

 

Figure 24. The architecture of the ñtop_Tctrl_appò application. 

4.7.2 Mapping Application Component Instances onto the network 

Continuing with the aforementioned example, the first step is to enable the reference to 

the application component instances present in the architecture of the ñtop_Tctrl_appò 

application in the description of the ñnetwork_exò architecture. For it, in the network 

view, the ñnetwork_exò component (declared in the network view) is declared as a 

specialization of the ñtop_Tctrl_appò application component (declared in the application 

view). 

 

Figure 25. Generalization of the ñnetwork_exò component to enable references to ñtop_Tctr_appò 

application component instances. 

Then, in the architecture description of the network, that is, in the ñnetwork_exò 

composite diagramò, the reference to the application component instances of the 

ñtop_Tctrl_appò are referenced and mapped to the network node instances. The 

mapping is done again via <<allocate>> relationships. This is exemplified in Figure 26 . 

There, ñcfiltTdataò, ñprocTdataò and  
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Figure 26. Allocation of the ñtop_Tctrl_appò application onto the network nodes of ñnetwork_exò. 

The same technique used to specify static mapping of component instances into intra-

node (SoC) resources is used, which helps to keep homogeneous the modelling 

techniques applied across MPSoC and network (SoS) levels. 

Using this technique the user can simply explore the impact of different mappings of the 

distributed application by changing the <<allocate>> associations. 

Notice also that in the example, not all the nodes have been targeted, specifically, the 

ñTsens1ò and ñTsens2ò nodes. It is not required since these nodes are already systems 

with its own application instance, as was shown in 4.5.4 (in charge of time stamping the 

temperature sample). 

At the same time, the allocation of ñctl1ò and ñctl2ò application component instances to 

the ñgway1ò and ñgway2ò nodes illustrates the possibility to map application 

components to nodes which, in turn, already have an application component instance 

inside. 
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Figure 27. Internal architecture of the gateway node. 

That the direct application component instance-to-node allocations shown in Figure 26, 

and the application component instance-to-RTOS instances shown in Figure 27 are 

synthetic modelling mechanisms. They are possible because they rely on a set of 

assumptions to enable the consideration of implicit memory space instances 

(executables) and RTOS instances (if required), and which enable their omission (and 

consequent modelling effort save). 

The following rules apply for the inference of implicit memory spaces: 

¶ Two component instances belonging to different application top components 

(<<system>> component) mapped to either an RTOS instance or a node, will 

involve two implicit memory spaces in between, one per system component. 

¶ A direct mapping of an application component instance to an RTOS instance 

involves an implicit memory space in between. In other words, they become the 

same executable. 

¶ If two or more application component instances belonging to the same 

application top component (<<system>> component) are directly mapped to an 

RTOS instance, it involves an implicit shared memory space in between. 

¶  Two component instances belonging to the same application top component 

(<<system>> component) but directly mapped to different RTOS instances or 

nodes involve different implicit shared memory spaces in between. 

The following rules apply for the inference of implicit RTOS instances: 
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¶ Any direct mapping of two or more explicit or implicit a memory spaces to the 

same processing element involves an intermediate implicit single-processor 

RTOS. 

¶ Any direct mapping of either a explicit or implicit memory space to a node 

integrating a cluster of symmetric processing elements involves an intermediate 

implicit SMP-RTOS. 

¶ Any direct mapping of a single memory space, either explicit or implicit, to a 

single processing element of CPU type involves an intermediate implicit RTOS
9
. 

¶ Any direct mapping of a single memory space, either explicit or implicit, to a 

custom processing element (FPU, etc) involves no RTOS instance. 

The inference rules rely on assumptions on the mapping preferences minding 

performance. For instance, it is assumed that when two application component instance 

belonging to the same top application component are mapped to the same RTOS 

instance, then it is preferred to put them in the same memory space because it involves 

lighter and faster communications among them.  

The inference rules also follow methodological criteria. The <<system>> components 

are distinguished from non-system components in the stronger requirement of involving 

at least a separated memory space.  

As a result, the Figure 26 diagrams is equivalent to the diagram of 

Figure 28, and the Figure 27 diagram is equivalent to the Figure 29 diagram. 

                                                 

9
 Modelling of bare-metal applications are not supported so far. 
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Figure 28. Figure 26 mapping making explicit memory spaces. 

 

Figure 29. Figure 27 mapping making explicit memory spaces. 

Finally, Figure 30 illustrates a case where the network model merges instances of nodes 

at different abstraction levels, and the mapping of distributed application.  
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Figure 30. Example of fixed allocation of a distributed application onto a set of processing nodes of 

a network. 

4.7.3 Mapping with explicit Memory Spaces 

As was shown in the previous section, the inference rules rely on a set of criteria which 

enable a synthetic mechanism to specify the mapping of the distributed application onto 

the network, which enables the omission of memory spaces in the model, and 

specifically, in the network architecture model. 

The production of models where the memory spaces are explicit, is not only supported, 

but it is necessary if the modeller wants to break the criteria of the aforementioned 

memory space inference rules. For instance, the modeller might want to map every 

single application component instance on its own memory space (as it is shown in 

Figure 31). In such an example, the ñcfilTdataò, ñprocTdataò and ñgenActuationò 

application component instances, which belong to the ñtop_Tctrl_appò are mapped to 

the same node (the server node), but each with its own memory space (so producing its 

own executable in synthesis). This also enables to explore the effect of different 

memory space allocations and mappings (see section 4.9.1). 
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Figure 31. Mapping of the distributed application allocating specifically a memory space to each 

application component instance. 

4.7.4 Distributed RTOS: Mapping RTOS instances onto the network 

In a similar way, the methodology enables the capture of distributed RTOS. They are 

captured using the same technique, i.e. by means of <<allocate>> UML abstractions 

from the RTOS instances to the nodes. The methodology assumes that such a mapping 

can be done to: 

¶ Any node which describes only a set of HW platform resources 

¶ Any node with an internal architecture description (sections 4.5.2, 4.5.3, 4.5.4) 

with computational resources (CPUs) not allocated. 

In both cases the default semantics is that the RTOS maps to all the available 

computational resources (assuming that the distributed RTOS is SMP, then the target 

must be also SMP). 

The description of the gateway platform, shown in Figure 32, shows an example of 

node as a HW platform. 
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Figure 32. Description of the ñgatewayò node, example of node as a HW platform.  

 

Figure 33. Example of distributed RTOS instance (ñDRTOSò) mapped to two nodes (ñgway1ò and 

ñgway2ò), modelled as two networked HW platforms. 

From the aforementioned default semantics, the distributed RTOS takes over the two 

processors of each gateway node. 

 

4.8 Modelling of Zones and Contiguity 

The modelling methodology enables the modelling of zones in a wide sense. The 

modelling approach which will be described relies on a minor extension of the domain 

view and profile shown in section 3.1, and shown in Figure 34. 

 
























































